

AUTOPISTAS DEL SOL S.A.

ESTUDIOS Y DISEÑOS DE LA INTERSECCION ABOCOL DE LA VARIANTE MAMONAL - GAMBOTE

VOLUMEN II TRAZADO Y DISEÑO GEOMÉTRICO DEL PUENTE ABOCOL

VERSIÓN 01

TC-2445-185

AUTOPISTAS DEL SOL S.A.

VOLUMEN II TRAZADO Y DISEÑO GEOMÉTRICO DEL PUENTE ABOCOL

VERSIÓN 01

CONTROL DE MODIFICACIONES

Versión Nº	Fecha	Numeral Modificado	Descripción de la Modificación	Responsable
01	Mayo 26 de 2014	N/A	Emisión original	Robinson Puello Bolaño

ELABORO:	REVISÓ:	APROBÓ:	FECHA:
Ing. Robinson Puello B.	Ing. José Yances	Ing. José Yances	May. 26 de 2014

AUTOPISTAS DEL SOL S.A.

VOLUMEN II TRAZADO Y DISEÑO GEOMÉTRICO DEL PUENTE ABOCOL

INDICE

I. II.	INTRODUCCIONOBJETIVOS Y ALCANCES	
II.1 II.2 II.2.1	ObjetivosAlcancesActividades de Diseño	II-5
III.	DESCRIPCION Y LOCALIZACION DEL PROYECTO	III-6
.1 .1.1 .1.2 .2		III-6 III-7
IV.	CARACTERISTICAS GEOMETRICAS	IV-11
IV.3 IV.4 IV.5	Tipo de terreno	IV-11 IV-13 IV-16 IV-17
	Pendiente máxima Longitudes mínimas de curvas verticales	IV-17 IV-19 io de IV-19
IV.7.1 IV.8	1 Transición de peralte	
IV.8.1 IV.8.2 IV.9	Carriles de aceleración	IV-23 IV-24 IV-26
V.	PLANOS Y ANEXOS	V-31

ANEXO No. 1: CARTERAS DE LOCALIZACIÓN

ANEXO No. 2: CANTIDADES DE CORTE, TERRAPLEN Y PAVIMENTO

ANEXO No. 3: PLANOS DE PLANTA-PERFIL, SECCIONES TRASVERSALES

INDICE DE CUADROS

CUADRO IV1 - Velocidad Específica del segmento central del ramal de enlace (V)
cuando <180° (km/h) IV-14
CUADRO IV - 2 - Velocidad Específica del segmento central del ramal de enlace (V)
cuando 180° (km/h)IV-14
CUADRO IV - 3 - Radios mínimos para peralte Max 6% y fricción máxima IV-16
CUADRO IV - 4 - Diseño Anchos de Pavimentos para giros en carreteras IV-17
CUADRO IV - 5 - Pendiente Media Máxima del corredor de ruta (%) en función de la
Velocidad de Diseño del Tramo homogéneo (VTR)IV-18
CUADRO IV - 6 - Relación entre la pendiente máxima (%) y la Velocidad Específica de la
tangente (VTv) IV-18
CUADRO IV - 7 - Valores de Kmin para el control de la distancia de visibilidad de parada y
longitudes mínimas según criterio de operación en curvas verticales IV-19
CUADRO IV-8- Radios según velocidad específica y peraltes para peralte Max de 6%
CUADRO IV - 9 - Valores Máximos y Mínimos de la Pendiente Longitudinal para las
rampas de peralte
CUADRO IV - 10 - Longitud mínima del carril de aceleración IV-24
CUADRO IV - 11 - Longitud mínima del carril de desaceleración

INDICE DE FIGURAS

FIGURA III-1 Localización Nacional del Proyecto	III-8
FIGURA III-2 Localización Departamental del Proyecto (Bolívar)	III-9
FIGURA III-3 Localización local del proyecto	III-10
Figura IV-1 - Deflexión total de un ramal de enlace	IV-15
Figura IV-2- Diagrama de Transición de Peraltes para Curvas Circulares	IV-22
Figura IV-3- Diagrama de Transición de Peraltes para curvas con Espirales de	Transición.
	IV-22
Figura IV-4- Esquema de un carril de aceleración	IV-23
Figura IV-5- Esquema de un carril de desaceleración	IV-25
Figura IV-6 – Seccion típica Eje Gambote – Abocol	IV-26
Figura IV-7 – Seccion típica Eje Puente (Abocol – Mamonal)	IV-27
Figura IV-8 – Sección típica Eje Puente (Sección 2 carriles)	IV-28

AUTOPISTAS DEL SOL

TRAZADO Y DISEÑO GEOMÉTRICO DE LA SEGUNDA CALZADA DEL CORREDOR TRAMO GAMBOTE-VARIANTE MAMONAL

CAPITULO I

I. INTRODUCCION

La costa norte del País se proyecta como un polo estratégico de desarrollo sobre el Caribe Colombiano. Su excelente ubicación geográfica, atractivos turísticos, recursos naturales y las extraordinarias zonas portuarias, resultan ser fortalezas que proyectan su despegue económico. Hechos como los tratados de libre comercio y el proyecto de la Ruta de las Américas que permitirá conectar por vía terrestre a Panamá con Colombia y Venezuela, se constituyen en extraordinarias oportunidades para así potenciar la conectividad del tránsito terrestre automotor de esta zona con el centro del País y cumplir el viejo sueño de unir por medio de una ruta terrestre las tres Américas.

Consciente de esta situación, el Ministerio de Transporte de la República de Colombia, a través del Instituto Nacional de Concesiones (INCO), en una primera etapa otorgó el Contrato de Concesión vial Ruta Caribe, el cual hace parte del Programa para el Desarrollo de Concesiones de Autopistas 2006 – 2014. El alcance de esta primera etapa comprende los siguientes tramos:

- TRAYECTO No. 1: Cartagena Turbaco Arjona
- TRAYECTO No. 2: Cartagena Bayunca
- TRAYECTO No. 3: Palmar de Varela Malambo
- TRAYECTO No. 4: Sabanalarga Palmar de Varela
- TRAYECTO No. 5: Bayunca Sabanalarga
- TRAYECTO No. 6: Ariona El Viso
- TRAYECTO No. 7: Malambo Barranguilla

Como tramos progresivos a la concesión se han proyectado los siguientes:

- Puente Vehicular Gambote.
- Ampliación de la Calle 30 en Barranquilla desde el puente Simón Bolívar hasta la entrada al Aeropuerto Ernesto Cortissoz.
- Segunda calzada y diseño de la rehabilitación del tramo existente de Gambote Variante Mamonal y de la variante de Cartagena (40 Kms).
- Doble Calzada de la variante de Palmar de Varela incluyendo el diseño de cinco (5) intersecciones a nivel (Glorietas).

Dentro de este contexto, en el presente documento se sintetizan los parámetros y resultados del Diseño geométrico del puente Abocol y adecuación de la intersección de las vias Variante Mamonal Gambote y la via hacia Abocol.

I-4

CAPITULO II.

II. OBJETIVOS Y ALCANCES

II.1 Objetivos

Diseño geométrico en planta y perfil del la intersección Abocol.

II.2 Alcances

II.2.1 Actividades de Diseño

Inicialmente se realizó la recopilación y análisis de la información sobre el trazado y diseño geométrico del corredor vial existente; analizada esta información se procedió a hacer un recorrido y revisión en campo, comparando la información recopilada con el corredor vial existente.

Con base en los estudios geológicos, geotécnicos, hidráulicos, ambientales y con la información topográfica tomada en campo se procedió a procesar dicha información para realizar el diseño geométrico del corredor vial. A continuación se describe cada una de las actividades realizadas a nivel de diseño geométrico.

II.2.1.1 Diseño Geométrico en planta.

Los datos obtenidos en campo se procesaron y sirvieron de base para la producción de la planimetría. Sobre estos planos y con la ayuda de software especializado se ubicó el eje de diseño y se determinaron todos los elementos horizontales de las curvas y bordes de las vías, con los cuales se elaboraron las Carteras de Localización.

Con esta información se elaboraron los planos planta-perfil en las formatos, tamaños y escalas establecidos por el INVIAS.

II.2.1.2 Diseño vertical.

Con la altimetría tomada en campo y con la ayuda de software especializado se definió la rasante de la vía, teniendo en cuenta las recomendaciones de los especialistas en las diferentes áreas y las pendientes máximas así como las mínimas necesarias para garantizar el buen drenaje superficial. En los sitios que lo ameritaron se definió la construcción de muros de contención, así como la localización de alcantarillas en los puntos bajos. Una vez concluida esta tarea se definieron los peraltes, con los cuales se establecieron las cotas de pavimento, tanto para el eje, como para los bordes de la vía. Con la información anterior se generaron las secciones transversales para el proyecto.

II-5

CAPITULO III.

III. DESCRIPCION Y LOCALIZACION DEL PROYECTO

III.1 Descripción

El presente proyecto se encuentra ubicado en la Región Caribe colombiana en el departamento de Bolívar, específicamente en Cartagena, capital del departamento. La intersección tipo trompeta Abocol, comunica la Variante Mamonal - Gambote con la vía Hacia Abocol, es uno de los puntos de comunicación con la zona industrial de la ciudad.

III.1.1 Climatología:

Por su situación geográfica en el área Suroeste del Caribe, el régimen climático de la región donde se encuentra Cartagena, está bajo la influencia de los desplazamientos Norte - Sur de la Zona de Convergencia Intertropical (Z.C.I.).

La Zona de Convergencia Intertropical (Z.C.I.), es un cinturón semicontinuo de bajas presiones localizado entre las regiones Subtropicales de los hemisferios Norte y Sur; este cinturón es conocido igualmente como Cresta Ecuatorial, Frente Intertropical y Frente Ecuatorial.

El movimiento de la Z.C.I., en dirección Norte o Sur es una resultante de los fenómenos físicos Subtropicales. Además, el sector está influenciado por la circulación de los vientos Alisios (vientos del N y NE), procedentes de los Centros de Alta Presión del Atlántico Nororiental. La incidencia de los vientos de Este - Sureste, también es notable en determinada época del año. El clima se caracteriza como tropical semiárido.

En el área, se identifican dos períodos climáticos principales, llamados Época Seca (verano) y Época Húmeda (invierno) y una época de Transición:

La época seca o de verano se extiende desde Diciembre hasta Abril, caracterizándose por vientos fuertes del sector Norte - Noreste y Iluvias débiles y escasas.

En esta época pueden presentarse los denominados "Mares de Leva", ocasionados por la incursión en aguas del Mar Caribe de Frentes Polares provenientes del Hemisferio Norte, cuando alcanzan a llegar a los 15 grados de latitud Norte (unas 150 millas náuticas al norte de la Guajira).

La época de humedad o de lluvias se extiende desde Agosto a Noviembre. Se caracteriza por vientos débiles, de orientación variable y por un régimen de lluvias abundantes. En

III-6

esta época suelen presentarse los denominados Ciclones Tropicales (Huracanes), los cuales pueden aumentar el régimen de lluvias en todo el Caribe colombiano.

La época de transición esta ccomprendida entre Mayo y Julio. También denominado Veranillo de San Juan. Esta época se caracteriza por vientos uniformes y fuertes de dirección Norte y Noreste. El inicio de esta época marca también el comienzo de la temporada de Huracanes en el área del Océano Atlántico Norte, Golfo de Méjico y Mar Caribe que se extiende hasta el mes de Noviembre.

La evolución de los parámetros hidrológicos e hidrodinámicos de la región está en estrecha relación con los tres períodos climáticos identificados.

Las variaciones climáticas estacionales definen la dirección e intensidad de las corrientes regionales y locales, la dirección e intensidad del oleaje y el régimen de precipitaciones.

III.1.2 Temperatura:

Se establece una temperatura media anual de 28 °C para el área de estudio. Las variaciones observadas en la temperatura media no superan los 2 °C, esto se debe principalmente a que la temperatura de la superficie del océano presenta fluctuaciones mínimas durante todo el año.

III.2 Localización del proyecto

El proyecto se localiza al norte de Colombia en la Región de la Costa Atlántica, en el departamento de BOLÍVAR, en la intersección tipo trompeta generada por las vías Variante Mamonal - Gambote y la via a Abocol como se muestra a continuación en la FIGURAS Nº III-1 – FIGURA III-3.

FIGURA III-1 Localización Nacional del Proyecto

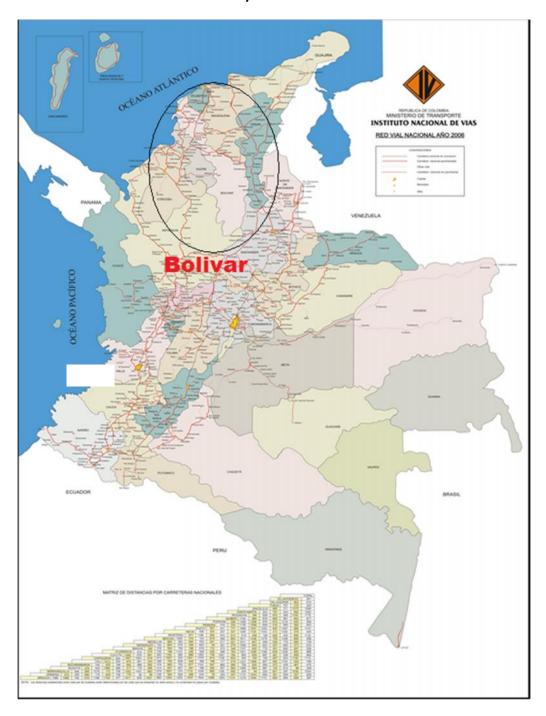


FIGURA III-2 Localización Departamental del Proyecto (Bolívar)

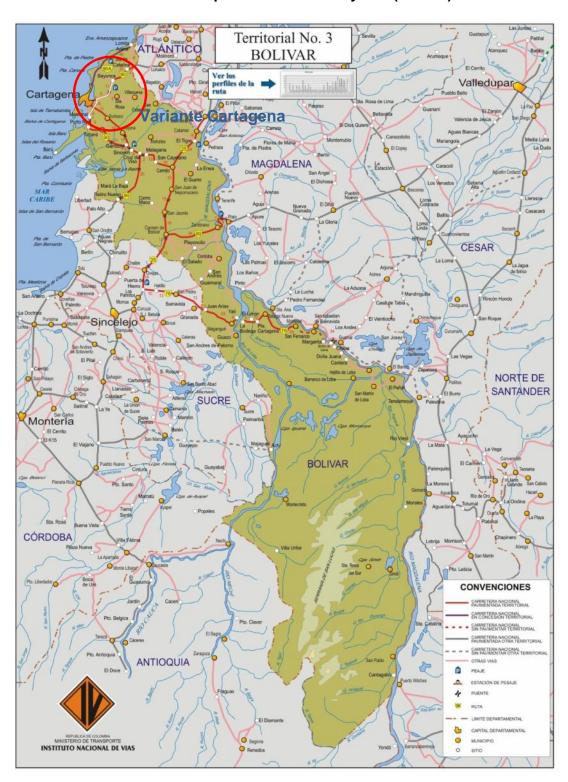


FIGURA III-3 Localización local del proyecto.

CAPITULO IV.

IV. CARACTERISTICAS GEOMETRICAS

De acuerdo con las condiciones encontradas en terreno, a los términos de referencia y las consideraciones previas tales como, la adquisición de predios de parte del INVIAS, se tuvo en cuenta mantener en casi su totalidad la vía existente de manera horizontal y vertical de tal forma que cumpliera con los parámetros mínimos de confort y condiciones de seguridad de la misma, por otra parte se tuvo el diseño en su totalidad de la nueva calzada se realizó en la parte izquierda de la existente en el sentido del abscisado ya que el INVIAS había adquirido previamente esos predios de ese costado, este diseño también tuvo en cuenta los parámetros mínimos de confort y condiciones de seguridad mínimas tanto horizontal como verticalmente.

IV.1 Tipo de terreno.

La configuración topográfica correspondiente al corredor del proyecto, presenta una conformación de terreno plano. De acuerdo con las definiciones planteadas por la normatividad vigente tenemos que:

Tiene pendientes transversales al eje de la vía menores de cinco grados (5°). Exige el mínimo movimiento de tierras durante la construcción por lo que no presenta dificultad ni en su trazado ni en su explanación. Sus pendientes longitudinales son normalmente menores de tres por ciento (3%).

Conceptualmente, este tipo de carreteras se definen como la combinación de alineamientos horizontal y vertical que permite a los vehículos pesados mantener aproximadamente la misma velocidad que la de los vehículos livianos.

IV.2 Velocidad de diseño

Este parámetro es la guía o de referencia que permite definir las características geométricas mínimas de todos los elementos del trazado, en condiciones de comodidad y seguridad. La principal inquietud radica en la escogencia de la velocidad más apropiada acorde con las características generales del proyecto, a la cual deben referirse todos los demás elementos del Diseño.

Acorde con la metodología del Manual de Diseño Geométrico de Vías 2008, es aplicable una evaluación más local de este parámetro que permite establecer tramos homogéneos ajustados a la condición real del alineamiento horizontal, sus características topográficas y enfocadas a la percepción directa que hará el usuario de la vía en sus desplazamientos.

IV-11

Es evidente que la velocidad de desplazamiento de los vehículos en nuestro medio está dada por las limitaciones o libertades que ofrece el trazado de la vía, la condición de la capa de rodadura, el tráfico y las características mismas del vehículo que se desplaza.

En este orden de ideas, y con base en los estudios que refiere el Manual de Diseño Geométrico de Carreteras de INVIAS 2008, se estima que la mayoría de vehículos en nuestro país, dependiendo de esa percepción de la vía, incrementan su velocidad respecto de la velocidad de diseño del tramo hasta en veinte kilómetros por hora (20 km/h).

La metodología establecida en la normatividad vigente para el análisis de este parámetro establece los siguientes lineamientos:

- 1. La Velocidad Específica de una curva horizontal no puede ser menor que la velocidad de diseño del tramo (V_{CH} V_{TR}), ni superior a esta en veinte kilómetros por hora (V_{CH} V_{TR} +20),
- 2. La Velocidad Específica de una curva horizontal debe ser asignada teniendo en cuenta la Velocidad Específica de la curva inmediatamente anterior y la longitud del segmento recto anterior. Esta evaluación se tipifica en cinco casos:
- CASO 1. Los conductores, al salir de la curva anterior, juzgan que la longitud del segmento recto es inferior a la distancia recorrida en aproximadamente cinco segundos (5 s) a la Velocidad de Diseño del tramo (150 m en promedio). En este caso no disponen del tiempo suficiente para obtener plena claridad sobre la situación y en consecuencia no alcanzan a realizar ajustes a su velocidad. La condición de seguridad indica que a la curva horizontal siguiente se le debe asignar la misma Velocidad Específica que la asignada a la curva que se acaba de recorrer.
- CASO 2. Los conductores, al salir de la curva anterior, juzgan que la longitud del segmento recto se encuentra entre ciento cincuenta y cuatrocientos metros (150 y 400 m). En este caso ajustan o no su velocidad en función de la percepción que obtienen del trazado más allá de la curva que encuentran ya muy cercana. Si la deflexión de la curva siguiente es menor de cuarenta y cinco grados (< 45°), los conductores alcanzan a tener una noción razonablemente clara del trazado que sigue y no disminuyen la velocidad a la que ya se desplazan por el segmento recto, que es la velocidad a la que salieron de la curva anterior. En consecuencia, se le debe asignar a la curva horizontal una Velocidad Específica igual a la Velocidad Específica de la curva anterior.
- CASO 3. Los conductores, al salir de la curva anterior, juzgan que la longitud del segmento recto se encuentra entre ciento cincuenta y cuatrocientos metros (150 y 400 m). Como el caso anterior, ajustan o no su velocidad en función de la noción que obtienen del trazado más allá de la curva que encuentran ya muy cercana. Si la deflexión de la curva siguiente es mayor o igual a cuarenta y cinco grados (45°), los conductores tienen una percepción incierta del trazado y cautelosamente disminuyen su velocidad por lo que a la curva horizontal se le debe asignar una

Velocidad Específica diez kilómetros por hora (10 km/h) menor que la Velocidad Específica de la curva anterior.

- CASO 4. Los conductores, al salir de la curva anterior, juzgan que la longitud del segmento recto se encuentra entre cuatrocientos y seiscientos metros (400 y 600 m). En este caso, el segmento recto es suficientemente extenso para que la velocidad de entrada a la curva siguiente sea independiente de la velocidad a la que se salió de la curva anterior, pero no demasiado, por lo que los conductores ajustan su velocidad a una superior tan solo en diez (10) kilómetros por hora respecto a la Velocidad de Diseño del tramo (VTR). Por lo tanto, se le debe asignar a la curva horizontal una Velocidad Específica igual a la Velocidad de Diseño del tramo más diez kilómetros por hora (VTR + 10), ya que es a esta velocidad a la que los vehículos entrarán en dicha curva.
- CASO 5. Los conductores, al salir de la curva anterior, juzgan que la longitud del segmento recto es mayor de seiscientos metros (600 m). En este caso, en que el segmento recto por su longitud relativamente grande estimula a los conductores a incrementar la velocidad, éstos ajustan su velocidad a una superior en veinte kilómetros por hora (20 km/h) respecto a la Velocidad de Diseño del tramo (VTR). Por lo tanto, se le debe asignar a la curva horizontal una Velocidad Específica igual a la Velocidad de Diseño del tramo más veinte kilómetros por hora (VTR + 20), ya que es a esta velocidad a la que los vehículos entrarán en dicha curva.
- Se debe buscar, como condición ideal, que todas o casi todas las curvas horizontales tengan como Velocidad Específica la Velocidad Específica del tramo homogéneo.

Debido a las características del corredor y teniendo en cuenta los lineamientos dados por la especificación, no se presenta una sectorización de tramos acorde con la velocidad, en virtud de que el trazado tanto en planta como en perfil no permite variaciones considerables.

IV.3 Velocidad de los ramales

Esta velocidad está en función de la Velocidad Específica del elemento geométrico inmediatamente anterior al inicio del carril de desaceleración. Esta velocidad se denomina Velocidad Específica de la Calzada de Origen. Además, está en función de la Velocidad Específica del elemento geométrico inmediatamente siguiente a la terminación del carril de aceleración. Esta velocidad se denomina Velocidad Específica de la Calzada de Destino. En CUADRO IV-1 se indica la Velocidad Específica en el segmento central del ramal de enlace (V) cuando la deflexión total del enlace es inferior a ciento ochenta grados (180°), y en la CUADRO IV-2 cuando la deflexión del enlace es mayor o igual a 180° (ver Figura IV-1.).

CUADRO IV -¡Error! Secuencia no especificada.1 - Velocidad Específica del segmento central del ramal de enlace (V) cuando <180° (km/h)

VELOCIDAD ESPECÍFICA DE LA CALZADA DE	VELOCIDAD ESPECÍFICA DE LA CALZADA DE DESTINO (km/h)												
ORIGEN (km/h)	40	50	60	70	80	90	100	110	120				
40	25	25	30	30	30	35	35	40	40				
50	30	35	35	40	40	40	40	45	45				
60	30	35	35	40	40	40	40	45	45				
70	40	45	45	50	50	50	50	50	50				
80	40	45	45	50	50	50	50	50	50				
90	60	60	60	60	60	60	60	60	60				
100	60	60	60	60	60	60	60	60	60				
110	70	70	70	70	70	70	70	70	70				
120	70	70	70	70	70	70	70	70	70				

(Fuente: Manual de Diseño Geométrico INVIAS 2008)

CUADRO IV - 2 - Velocidad Específica del segmento central del ramal de enlace (V) cuando 180° (km/h)

VELOCIDAD ESPECÍFICA DE LA CALZADA DE	VELOCIDAD ESPECÍFICA DE LA CALZADA DE DESTINO (km/h)												
ORIGEN (km/h)	40	50	60	70	80	90	100	110	120				
40	25	25	25	25	25	30	30	30	30				
50	30	30	30	30	30	35	35	35	35				
60	30	30	30	30	30	35	35	35	35				
70	35	35	35	35	35	35	35	35	35				
80	35	35	35	35	35	35	35	35	35				
90	40	40	40	40	40	40	40	40	40				
100	40	40	40	40	40	40	40	40	40				
110	50	50	50	50	50	50	50	50	50				
120	50	50	50	50	50	50	50	50	50				

(Fuente: Manual de Diseño Geométrico INVIAS 2008)

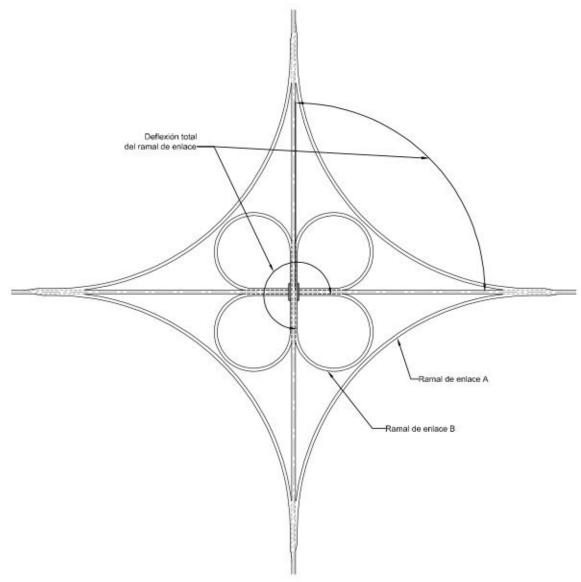


Figura IV-1 - Deflexión total de un ramal de enlace

(Fuente: Manual de Diseño Geométrico INVIAS 2008)

IV.4 Radios mínimos

Dado la consideración el tipo de carretera que se ha definido acorde con las dimensiones de la sección transversal y la velocidad de diseño adoptada, el Manual de Diseño Geométrico para carreteras contempla como aplicables los criterios establecidos a continuación:

CUADRO IV - 3 - Radios mínimos para peralte Max 6% y fricción máxima

VELOCIDAD ESPECÍFICA (V _{CH})	PERALTE MÁXIMO	COEFICIENTE DE FRICCIÓN TRANSVERSAL	TOTAL e _{máx} + f _{Tmáx}	RADIO MÍNIMO (m)				
(km/h)	(%)	f _{Tmáx}	Cmax 1 Imax	CALCULADO	REDONDEADO			
20	6,0	0,35	0,41	7,7	15 ⁽¹⁾			
30	6,0	0,28	0,34	20,8	21			
40	6,0	0,23	0,29	43,4	43			
50	6,0	0,19	0,25	78,7	79			
60	6,0	0,17	0,23	123,2	123			

(Fuente: Manual de Diseño Geométrico INVIAS 2008)

En el presente diseño los valores de radio escogido han sido revisados de acuerdo con la velocidad específica.

IV.5 Anchos Ramales

El ancho del ramal es un elemento de gran importancia ya que albergara los vehículos y las posibles combinaciones y condiciones de los mismos.

Teniendo en cuenta y en apoyo de la normatividad de la AASTHO 2004 podemos tener los siguientes valores a continuación:

CUADRO IV - 4 - Diseño Anchos de Pavimentos para giros en carreteras

				Met	ric								US	Custo	omary				
				Pav	ement wi	dth (m)								Pave	ment wi	dth (ft)			
Radius on inner edge of	operation—no provision for passing p a stalled vehicle			prov a	rovision for passing a stalled vehicle			Case III Two-lane operation— either one way or two way		of	a stalled vehicle		ope provis a st	Case II One-lane, one-way operation—with provision for passing a stalled vehicle			Case III Two-lane operation— either one way or two way		
pavement, R (m)		В	C		n traffic c			-	С	pavement,		В	C		traffic co		S A	-	0
	Α			Α	В	С	Α	В	_	R (ft)	Α			Α		C		В	С
15 25	5.4 4.8	5.0	5.8	6.0 5.6	6.9	9.2 7.9	9.4 8.6	11.0 9.7	13.6 11.1	50 75	18 16	18 17	23 20	20 19	26 23	30 27	31 29	36 33	45 38
30 50	4.5	4.6	5.5 5.0	5.5	6.3	7.6 7.0	8.4 7.9	9.4	10.6 9.5	100 150	15 14	16 15	18 17	18 18	22	25 23	28 26	31 29	35 32
75 100	3.9	4.5		5.2 5.2	5.9	6.7 6.5	7.7 7.6	8.5 8.3	8.9 8.7	200 300	13 13	15 15	16 15	17 17	20 20	22 22	26 25	28 28	30 29
125 150	3.9	4.5	4.5	5.1 5.1	5.8	6.4	7.6 7.5	8.2	8.5 8.4	400 500	13 12	15 15	15 15	17 17	19 19	21	25 25	27 27	28 28
Tangent	3.6	_		5.0		6.1	7.3	7.9	7.9	Tangent	12	14	14	17	18	20	24	26	26
			odificatio		arding ed	ge treat						Width mo	dification			ge treat			
No stabilize shoulder	d	None			None		None			No stabilize shoulder	d	None		No	one		Non	е	
Sloping curl		None		1	None		None	•		Sloping curt		None		No	one		None	е	
Vertical curt):									Vertical curt):								
one side two sides		Add 0			None Add 0.3 n	1	Add (one side two sides		Add 1 ft Add 2 ft			one dd 1 ft		Add Add		
Stabilized shoulder, or both sides	Add 0.6 m Add 0.3 m Lane width for conditions B & C on tangent may be reduced to 3.6 m where shoulder is 1.2 m or wider				ict 0.6 v Ider is 1		Stabilized shoulder, or both sides	ne or	on tang	ent may to 12 ft shoulder	be pa	educt sh dth; min avement a under (imum width		uct 2 ft ulder is er				

Note: A = predominantly P vehicles, but some consideration for SU trucks.

B = predominantly P vehicles, but some consideration for SU trucks.

Note: A = predominantly P vehicles, but some consideration for SU trucks.

B = sufficient SU vehicles to govern design, but some consideration for SU trucks. for semitrailer combination trucks. C = sufficient bus and combination-trucks to govern design.

(Fuente: Geometric Design of Highways and Streets 2004)

IV.6 Diseño en perfil del eje de carretera

IV.6.1 Pendiente mínima

La pendiente mínima longitudinal de la rasante busca garantizar especialmente el escurrimiento fácil de las aguas lluvias en la superficie de rodadura y en las cunetas. La pendiente mínima deseable será de cero punto cinco por ciento (0.5%) y cero punto tres por ciento (0.3%) para diseño en zonas de proyecto con terreno plano o sitios donde no ha sido posible el diseño con la pendiente mínima deseable, bien por condición topográfica o con el fin de evitar elevaciones innecesarias de la calzada que conllevarían a obras de contención y efecto sobre el alineamiento horizontal.

IV.6.2 Pendiente máxima

semitrailer combination trucks.

C = sufficient bus and combination-trucks to govern design.

La Pendiente máxima está dada en relación directa con la velocidad a la que circulan los vehículos. Acorde con las características topográficas del trazado, la velocidad específica determinada y la necesidad de minimizar los movimientos de tierra, se ha definido una pendiente máxima hasta del 6% para una vía primaria con velocidad específica de 80 km/h.

Para los casos en donde no es posible mantener una pendiente máxima del 6%, y se tiene la posibilidad de incluir curvas verticales, se ha buscado que sean curvas verticales consecutivas con el fin de disminuir el efecto de la pendiente adversa.

Lo anterior se encuentra reflejado en las siguientes cuadros:

CUADRO IV - 5 - Pendiente Media Máxima del corredor de ruta (%) en función de la Velocidad de Diseño del Tramo homogéneo (VTR)

CATEGORÍA DE LA CARRETERA	VELOCIDAD DE DISEÑO DEL TRAMO HOMOGÉNEO V _{TR} (km/h)												
CARRETERA	20	30	40	50	60	70	80	90	100	110			
Primaria de dos calzadas	-	-		<u></u>	-	6	6	6	5	5			
Primaria de una calzada	: + :	1980	-	-	7	7	6	6	5				
Secundaria	-	-	7	7	7	7	6		<u>_</u>	-			
Terciaria	7	7	7	-		s + s	1150	-	-				

(Fuente: Manual de Diseño Geométrico INVIAS 2008)

CUADRO IV - 6 - Relación entre la pendiente máxima (%) y la Velocidad Específica de la tangente (VTv).

CATEGORÍA DE LA	VELOCIDAD ESPECÍFICA DE LA TANGENTE VERTICAL V _{TV} (km/h)											
CARRETERA	20	30	40	50	60	70	80	90	100	110	120	130
Primaria de dos calzadas	-	-	-	-	-	6	6	6	5	5	4	4
Primaria de una calzada	-	-	-	-	8	7	6	6	5	5	5	-
Secundaria	-	-	10	9	8	7	6	6	6		-	2
Terciaria	14	12	10	10	10	-	-		-		-	*

(Fuente: Manual de Diseño Geométrico INVIAS 2008)

IV.6.3 Longitudes mínimas de curvas verticales

Acorde con los criterios de Seguridad, operación y Drenaje, el Manual de Diseño Geométrico provee la siguiente relación para controlar los valores mínimos de curva vertical a implementar en el proyecto de diseño:

CUADRO IV - 7 - Valores de Kmin para el control de la distancia de visibilidad de parada y longitudes mínimas según criterio de operación en curvas verticales

	DISTANCIA		LONGITUD			
VELOCIDAD ESPECÍFICA	DE VISIBILIDAD	CURVA	CONVEXA	CURVA	LONGITUD MÍNIMA SEGÚN	
V _{CV} (km/h)	DE PARADA (m)	CALCULADO	REDONDEADO	CALCULADO	REDONDEADO	CRITERIO DE OPERACIÓN (m)
20	20	0.9	1	2.1	3.0	12
30	35	2.7	3	5.1	6.0	18
40	50	5.6	6	8.5	9.0	24
50	65	9.5	10	12.2	13.0	30
60	85	16.1	17	17.3	18.0	36
70	105	24.7	25	22.6	23.0	42
80	130	37.8	38	29.4	30.0	48
90	160	57.3	58	37.6	38.0	54
100	185	76.6	77	44.6	45.0	60
110	220	108.2	109	54.4	55.0	66
120	250	139.8	140	62.8	63.0	72
130	285	181.7	182	72.7	73.0	78

(Fuente: Manual de Diseño Geométrico INVIAS 2008)

IV.6.4 Longitud máxima de la curva vertical cóncava y convexa según el criterio de drenaje

Es necesario controlar la longitud máxima de la curva vertical cóncava para evitar el empozamiento de las aguas superficiales en la batea o punto más bajo de la curva. De acuerdo con este criterio, se debe diseñar la curva vertical cóncava con un valor de K menor o igual a cincuenta (50)

Una vez procesada toda la información de diseño tanto en planta como en perfil, se procedió a elaborar un listado de coordenadas y cotas del proyecto para el eje y los bordes.

IV.7 Peralte

Dado la consideración el tipo de carretera que se ha definido acorde con las dimensiones de la sección transversal y la velocidad de diseño adoptada, el Manual de Diseño Geométrico para carreteras contempla como aplicables los criterios establecidos a continuación:

CUADRO IV-8- Radios según velocidad específica y peraltes para peralte Max de 6%

e (%)	V _{CH} = 20 km/h R (m)	V _{CH} = 30 km/h R (m)	V _{CH} = 40 km/h R (m)	V _{CH} = 50 km/h R (m)	V _{CH} = 60 km/h R (m)
1.5	194	421	738	1050	1440
2.0	138	299	525	750	1030
2.2	122	265	465	668	919
2.4	109	236	415	599	825
2.6	97	212	372	540	746
2.8	87	190	334	488	676
3.0	78	170	300	443	615
3.2	70	152	269	402	561
3.4	61	133	239	364	511
3.6	51	113	206	329	465
3.8	42	96	177	294	422
4.0	36	82	155	261	380
4.2	31	72	136	234	343
4.4	27	63	121	210	311
4.6	24	56	108	190	283
4.8	21	50	97	172	258
5.0	19	45	88	156	235
5.2	17	40	79	142	214
5.4	15	36	71	128	195
5.6	15	32	63	115	176
5.8	15	28	56	102	156
6.0	15	21	43	79	123

(Fuente: Manual de Diseño Geométrico INVIAS 2008)

IV.7.1 Transición de peralte

Las longitudes de transición son consideradas a partir del punto en donde el borde exterior del pavimento comienza a elevarse partiendo de la inclinación de bombeo normal de la sección transversal. Estas longitudes de transición consideran una distancia de aplanamiento, requerida para que el borde exterior de la sección transversal pase de bombeo normal a peralte 0 o nivel con el eje de vía, y una longitud adicional que permite pasar de peralte 0 o nivel con la vía a peralte máximo dependiendo del valor adoptado.

La pendiente de la rampa de peraltes, definida como la diferencia relativa que existe entre la inclinación del eje longitudinal de la calzada y la inclinación del borde de la misma, ha buscado conservarse dentro del valor máximo permitido por la norma, indicados en la siguiente tabla:

CUADRO IV - 9 - Valores Máximos y Mínimos de la Pendiente Longitudinal para las rampas de peralte

VELOCIDAD ESPECÍFICA	PENDIENTE RE RAMPA DE P	
(V _{CH}) (km/h)	MÁXIMA (%)	MÍNIMA (%)
20	1.35	
30	1.28	
40	0.96	
50	0.77	
60	0.60	
70	0.55	01 0
80	0.50	0.1 _X a
90	0.47	
100	0.44	
110	0.41	
120	0.38	
130	0.38	

(Fuente: Manual de Diseño Geométrico INVIAS 2008)

La longitud de transición se calcula en función del peralte asignado y de la inclinación de la rampa de peraltes de acuerdo con la velocidad específica del elemento:

$$L = a \times b_w \times \left(\frac{e_f - e_i}{\Lambda_S}\right)$$

Tambien:

$$a = w x n$$

Donde: L: Longitud de Transición (m)

ef-ei: Cambio de Peralte (%)

a: Ancho de la Calzada que Gira = ancho de carriles que giran – ancho

de media sección

bw: Factor de Ajuste debido al número de carriles que giran

s: Inclinación de la rampa de peraltes

W: Ancho de carril, en metrosn: Número de carriles que giran

La forma de generar la transición para el proyecto adopta los siguientes criterios: Se mantiene el nivel del eje de diseño ajustado al nivel de rasante de diseño, y giran los bordes izquierdo y derecho respectivamente. Es decir la calzada gira alrededor del eje.

Figura IV-2- Diagrama de Transición de Peraltes para Curvas Circulares

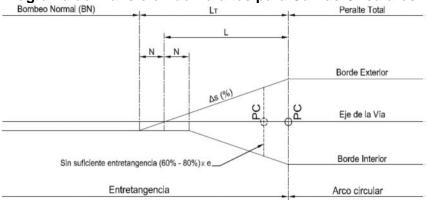
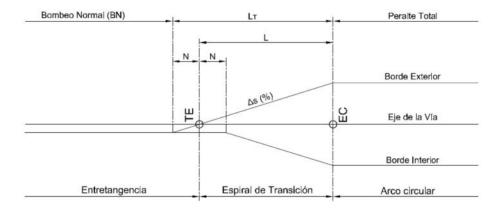



Figura IV-3- Diagrama de Transición de Peraltes para curvas con Espirales de Transición

IV.8 Carriles de aceleración y desaceleracion.

Pero el éxito para el buen funcionamiento de un intercambio consiste en la provisión de los apropiados carriles para el cambio de velocidad, para que los vehículos al entrar al ramal de enlace y reducir la velocidad, lo hagan sin interferir inconvenientemente con el movimiento en la via principal y que, igualmente, al integrarse dichos vehículos a la via principal, justo al salir del ramal de enlace, lo hagan a velocidades compatibles con las de la corriente mayor, para que el flujo vehicular conserve su régimen de operación libre.

Estos carriles de cambio de velocidad, incluyendo las áreas de transición, son concebidos para que la aceleración y deceleración de los vehículos que salen de o entren del ramal de enlace, se desarrolle en unas extensiones virtuales de las rampas, que siguen un recorrido paralelo a las pistas que se cruzan en el intercambio.

IV.8.1 Carriles de aceleración

Se diseña un carril de aceleración para que los vehículos que deben incorporarse a la calzada principal puedan hacerlo con una velocidad similar a la de los vehículos que circulan por ésta. Los carriles de aceleración deben ser paralelos a la calzada principal.

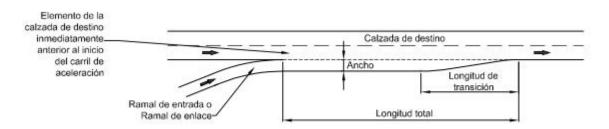


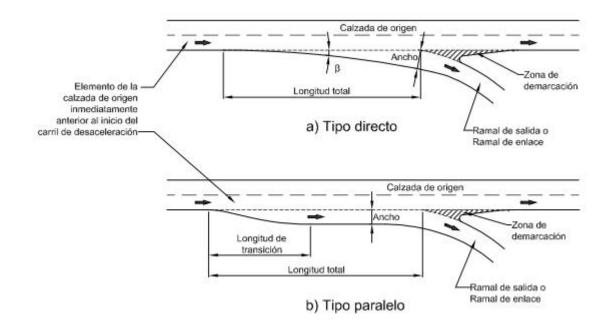
Figura IV-4- Esquema de un carril de aceleración

(Fuente: Manual de Diseño Geométrico INVIAS 2008)

CUADRO IV - 10 - Longitud mínima del carril de aceleración

VÍ	A PRIMARIA (CA	LZADA	DE DE	STIN	O)			10
Velocidad específic entrada ⁽¹⁾ o de er		PARE	25	30	40	50	60	80
Velocidad Específica del elemento de la calzada de destino inmediatamente anterior al inicio del carril de aceleración (km/h)	Longitud de la transición (m)	L acelera	ongit ación,	inclu				ción
50	45	90	70	55	45	-	-	-
60	55	140	120	105	90	55	-	273
70	60	185	165	150	135	100	60	-
80	65	235	215	200	185	150	105	-
100	75	340	320	305	290	255	210	105
120	90	435	425	410	390	360	300	210
VÍA	SECUNDARIA (C	ALZADA	DE	EST	NO)			
50	45	55	45	45	45	1 + 1	-	-
60	55	90	75	65	55	55	-	-
70	60	125	110	90	75	60	60	
80	65	165	150	130	110	85	65	-
100	75	255	235	220	200	170	120	75
120	90	340	320	300	275	250	195	100

Ramal de entrada en el caso de intersecciones canalizadas a nivel.


(Fuente: Manual de Diseño Geométrico INVIAS 2008)

IV.8.2 Carriles de desaceleración

Tienen por objeto permitir que los vehículos que vayan a ingresar en un ramal de salida o en un ramal de enlace puedan reducir su velocidad hasta alcanzar la de la calzada secundaria o la del ramal de enlace. Su utilidad es tanto mayor cuanto mayor sea la diferencia de velocidades.

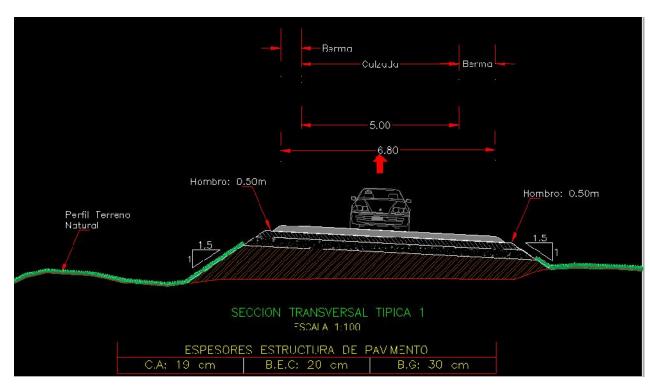
⁽²⁾ Ramal de enlace en el caso de intersecciones a desnivel (V_{RE})

Figura IV-5- Esquema de un carril de desaceleración

CUADRO IV - 11 - Longitud mínima del carril de desaceleración

Velocidad específica e salida ⁽¹⁾ o de enlace	PARE	25	30	40	50	60	80	
Velocidad Específica del elemento de la calzada de origen inmediatamente anterior al inicio del carril de desaceleración (km/h)	Longitud de la transición (m)	Longitud total del carril de desaceleración, incluyendo la transición (m)						
50	45	70	50	45	45		-	
60	55	90	70	70	55	55	-	-
70	60	105	90	90	75	60	60	*
80	65	120	105	105	90	75	65	
100	75	140	125	125	110	95	80	75
120	90	160	145	145	130	130	110	90

⁽¹⁾ Ramal de salida en el caso de intersecciones canalizadas a nivel.


(Fuente: Manual de Diseño Geométrico INVIAS 2008)

⁽²⁾ Ramal de enlace en el caso de intersecciones a desnivel (V_{RE})

IV.9 Corona

La Corona está conformada por el ancho total de la calzada más el ancho total de las bermas si las hay, así pues el ancho de corona proyectado para las vías del proyecto será el siguiente:

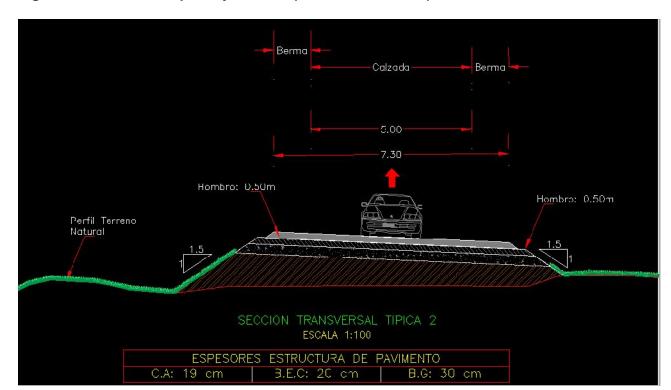


Figura IV-7 – Seccion típica Eje Puente (Abocol – Mamonal)

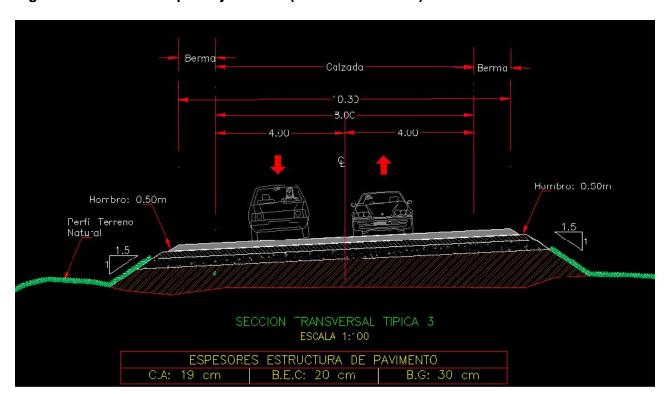


Figura IV-8 – Sección típica Eje Puente (Sección 2 carriles)

Parametros EJE GA	Parametros EJE GAMBOTE - ABOCOL								
Velocidad	30 km/h - 45-km/h								
Radio eje	65.15 m								
Radioborde interior	60 m								
Ancho Corona	6.8 m								
Ancho calzada	5 m								
Peralte	4.40%								
Pendiente relativa max	1.28%								
Pendiente relativa max	0.365%								
Pendiente Max	7.00%								
Pendiente Min	0.30%								
Parámetro mínimo (K) para curvas verticales cóncavas	6								
Parámetro mínimo (K) para curvas verticales convexas	2								
Parámetro mínimo (K) Maximo	50								
Longitud mínima de curva vertical	20 m								

Parametros	EJE PUENTE				
Velocidad	30 km/h				
Radio eje	47.15				
Radioborde interior	42				
Ancho Corona	10.3m				
Ancho calzada	8m				
Peralte	5.00%				
Pendiente relativa max	1.28%				
Pendiente relativa max	0.365%				
Pendiente Max	7.00%				
Pendiente Min	0.30%				
Parámetro mínimo (K) para curvas verticales cóncavas	6				
Parámetro mínimo (K) para curvas verticales convexas	2				
Parámetro mínimo (K) Maximo	50				
Longitud mínima de curva vertical	20 m				

IV.10 Cálculo de volúmenes

Utilizando software especializado para el diseño de vías se ha proyectado el cálculo de volúmenes de corte y lleno así como de la estructura de pavimento a lo largo del eje de proyecto. Utilizando un modelo digital de terreno, la aplicación de diseño muestrea secciones a intervalos constantes a lo largo del eje final de alineamiento horizontal, sumado a este proceso, y acorde con el diseño de rasante proyectada, la aplicación es capaz de generar secciones transversales en cada abscisa muestreada.

Para todo el eje de proyecto de define una sección tipo acorde con las dimensiones indicadas anteriormente, y esta sección tipo es asignada mediante la aplicación de diseño al eje del proyecto. De esta forma la aplicación puede proyectar una sección de diseño abscisa por abscisa, para producir un reporte de cubicación.

Se calcularon los volúmenes tanto de corte como de terraplén del proyecto y los volúmenes de la estructura de pavimento.

CAPITULO V

V. PLANOS Y ANEXOS

Como producto de las actividades descritas en el presente capítulo se generaron los siguientes planos y anexos, los cuales cumplen con los requisitos establecidos por el INVIAS:

Anexo No. 1 Carteras de localización.

Anexo No. 2 Cantidades de obra de corte, terraplén y pavimento.

Anexo No. 3 Planos de planta-perfil, secciones transversales

ANEXO No. 1: CARTERAS DE LOCALIZACIÓN

ESTUDIOS Y DISEÑOS DEFINITIVOS DE LA SEGUNDA CALZADA Y DISEÑOS DE LA REHABILITACION DEL TRAMO GAMBOTE - MAMONAL

LISTADO DE COORDENADAS EJE PUENTE

		EJE			BOF	RDE DERECHO)			BOR	DE IZQUIERD	0	
ABS	0074	COORD	ENADAS	COORD	ENADAS				COORD	ENADAS			
	COTA	NORTE	ESTE	NORTE	ESTE	DISTANCIA	PERALTE	COTA	NORTE	ESTE	DISTANCIA	PERALTE	COTA
K0+050.00	23.227	1632154.513	846136.146	1632148.713	846136.128	5.80	-2.00%	23.111	1632159.613	846136.162	5.10	2.00%	23.329
K0+055.00	23.134	1632154.497	846141.146	1632148.697	846141.128	5.80	-2.00%	23.018	1632159.597	846141.162	5.10	2.00%	23.236
K0+060.00	23.037	1632154.481	846146.146	1632148.681	846146.128	5.80	-2.00%	22.921	1632159.581	846146.162	5.10	2.00%	23.139
K0+065.00	22.940	1632154.466	846151.146	1632148.666	846151.128	5.80	-2.00%	22.824	1632159.566	846151.162	5.10	2.00%	23.042
K0+070.00	22.844	1632154.450	846156.146	1632148.650	846156.128	5.80	-2.00%	22.728	1632159.550	846156.162	5.10	2.00%	22.946
K0+075.00	22.747	1632154.435	846161.146	1632148.635	846161.128	5.80	-2.00%	22.631	1632159.535	846161.162	5.10	2.00%	22.849
K0+080.00	22.650	1632154.419	846166.146	1632148.619	846166.128	5.80	-2.00%	22.534	1632159.519	846166.161	5.10	2.00%	22.752
K0+085.00	22.554	1632154.403	846171.146	1632148.603	846171.127	5.80	-2.00%	22.438	1632159.503	846171.161	5.10	2.00%	22.656
K0+090.00	22.457	1632154.388	846176.146	1632148.588	846176.127	5.80	-2.00%	22.341	1632159.488	846176.161	5.10	2.00%	22.559
K0+095.00	22.360	1632154.367	846181.146	1632148.572	846181.111	5.80	-2.00%	22.244	1632159.465	846181.176	5.10	2.00%	22.462
K0+100.00	22.258	1632154.302	846186.145	1632148.552	846186.024	5.75	-2.00%	22.143	1632159.391	846186.252	5.09	2.00%	22.360
K0+105.00	22.145	1632154.133	846191.142	1632148.478	846190.875	5.66	-2.00%	22.032	1632159.213	846191.382	5.09	2.00%	22.247
K0+110.00	22.020	1632153.804	846196.131	1632148.276	846195.657	5.55	-2.00%	21.909	1632158.870	846196.565	5.09	2.00%	22.122
K0+115.00	21.884	1632153.258	846201.101	1632147.877	846200.369	5.43	-2.11%	21.770	1632158.303	846201.786	5.09	2.11%	21.991
K0+120.00	21.736	1632152.439	846206.032	1632147.220	846204.995	5.32	-2.81%	21.587	1632157.445	846207.027	5.10	2.81%	21.879
K0+125.00	21.578	1632151.293	846210.898	1632146.248	846209.508	5.23	-3.51%	21.395	1632156.230	846212.258	5.12	3.51%	21.757
K0+130.00	21.408	1632149.770	846215.659	1632144.916	846213.872	5.17	-4.21%	21.190	1632154.592	846217.434	5.14	4.21%	21.624
K0+135.00	21.227	1632147.829	846220.265	1632143.186	846218.032	5.15	-4.91%	20.974	1632152.469	846222.496	5.15	4.91%	21.480
K0+140.00	21.040	1632145.432	846224.650	1632141.049	846221.946	5.15	-5.00%	20.783	1632149.815	846227.354	5.15	5.00%	21.298
K0+145.00	20.854	1632142.586	846228.758	1632138.514	846225.605	5.15	-5.00%	20.597	1632146.658	846231.911	5.15	5.00%	21.112
K0+150.00	20.667	1632139.321	846232.542	1632135.606	846228.976	5.15	-5.00%	20.410	1632143.037	846236.108	5.15	5.00%	20.925
K0+155.00	20.480	1632135.674	846235.959	1632132.357	846232.019	5.15	-5.00%	20.223	1632138.991	846239.899	5.15	5.00%	20.738
K0+160.00	20.293	1632131.686	846238.971	1632128.805	846234.702	5.15	-5.00%	20.036	1632134.567	846243.239	5.15	5.00%	20.551
K0+165.00	20.107	1632127.401	846241.543	1632124.988	846236.994	5.15	-5.00%	19.850	1632129.815	846246.093	5.15	5.00%	20.365
K0+170.00	19.920	1632122.868	846243.648	1632120.950	846238.869	5.15	-5.00%	19.663	1632124.787	846248.428	5.15	5.00%	20.178
K0+175.00	19.733	1632118.138	846245.261	1632116.737	846240.306	5.15	-5.00%	19.476	1632119.540	846250.217	5.15	5.00%	19.991
K0+180.00	19.547	1632113.264	846246.365	1632112.395	846241.289	5.15	-5.00%	19.290	1632114.133	846251.441	5.15	5.00%	19.805
K0+185.00	19.360	1632108.300	846246.946	1632107.973	846241.806	5.15	-5.00%	19.103	1632108.627	846252.086	5.15	5.00%	19.618
K0+190.00	19.173	1632103.303	846246.999	1632103.522	846241.853	5.15	-5.00%	18.916	1632103.084	846252.144	5.15	5.00%	19.431
K0+195.00	18.986	1632098.328	846246.522	1632099.090	846241.429	5.15	-5.00%	18.729	1632097.566	846251.615	5.15	5.00%	19.244
K0+200.00	18.800	1632093.432	846245.521	1632094.729	846240.537	5.15	-5.00%	18.543	1632092.135	846250.505	5.15	5.00%	19.058
K0+205.00	18.613	1632088.668	846244.008	1632090.486	846239.190	5.15	-5.00%	18.356	1632086.851	846248.827	5.15	5.00%	18.871
K0+210.00	18.426	1632084.092	846241.999	1632086.409	846237.400	5.15	-5.00%	18.169	1632081.775	846246.599	5.15	5.00%	18.684
K0+215.00	18.240	1632079.754	846239.518	1632082.545	846235.189	5.15	-5.00%	17.983	1632076.964	846243.846	5.15	5.00%	18.498
K0+220.00	18.060	1632075.704	846236.590	1632078.937	846232.582	5.15	-5.00%	17.803	1632072.470	846240.599	5.15	5.00%	18.318
K0+225.00	17.894	1632071.986	846233.251	1632075.625	846229.607	5.15	-5.00%	17.637	1632068.346	846236.895	5.15	5.00%	18.152
K0+230.00	17.741	1632068.642	846229.537	1632072.646	846226.299	5.15	-5.00%	17.484	1632064.637	846232.775	5.15	5.00%	17.999
K0+235.00	17.602	1632065.710	846225.490	1632070.035	846222.694	5.15	-5.00%	17.345	1632061.383	846228.287	5.15	5.00%	17.860
K0+240.00	17.477	1632063.223	846221.155	1632067.819	846218.832	5.15	-5.00%	17.220	1632058.313	846223.635	5.50	5.00%	17.752

ESTUDIOS Y DISEÑOS DEFINITIVOS DE LA SEGUNDA CALZADA Y DISEÑOS DE LA REHABILITACION DEL TRAMO GAMBOTE - MAMONAL

LISTADO DE COORDENADAS EJE PUENTE

		EJE			BOF	RDE DERECHO)			BOR	DE IZQUIERD	0	
ABS	0074	COORD	ENADAS	COORD	ENADAS				COORD	ENADAS			
	COTA	NORTE	ESTE	NORTE	ESTE	DISTANCIA	PERALTE	COTA	NORTE	ESTE	DISTANCIA	PERALTE	COTA
K0+245.00	17.366	1632061.209	846216.581	1632066.025	846214.758	5.15	-5.00%	17.109	1632055.167	846218.868	6.46	5.00%	17.689
K0+250.00	17.268	1632059.690	846211.820	1632064.672	846210.517	5.15	-5.00%	17.011	1632051.865	846213.866	8.09	5.00%	17.672
K0+255.00	17.184	1632058.683	846206.924	1632063.776	846206.156	5.15	-5.00%	16.927	1632056.557	846207.245	2.15	5.00%	17.292
K0+260.00	17.114	1632058.201	846201.950	1632063.346	846201.725	5.15	-5.00%	16.857	1632056.053	846202.044	2.15	5.00%	17.222
K0+265.00	17.057	1632058.248	846196.953	1632063.388	846197.274	5.15	-5.00%	16.800	1632056.102	846196.819	2.15	5.00%	17.165
K0+270.00	17.014	1632058.823	846191.988	1632063.900	846192.851	5.15	-5.00%	16.757	1632056.703	846191.628	2.15	5.00%	17.122
K0+275.00	16.985	1632059.921	846187.113	1632064.878	846188.508	5.15	-5.00%	16.728	1632057.851	846186.530	2.15	5.00%	17.093
K0+280.00	16.963	1632061.528	846182.380	1632066.310	846184.293	5.15	-5.00%	16.706	1632059.532	846181.582	2.15	5.00%	17.071
K0+285.00	16.941	1632063.627	846177.845	1632068.180	846180.253	5.15	-5.00%	16.684	1632061.727	846176.840	2.15	5.00%	17.049
K0+290.00	16.918	1632066.195	846173.557	1632070.467	846176.434	5.15	-5.00%	16.661	1632064.412	846172.357	2.15	5.00%	17.026
K0+295.00	16.896	1632069.202	846169.566	1632073.146	846172.878	5.15	-5.00%	16.639	1632067.556	846168.183	2.15	5.00%	17.004
K0+300.00	16.873	1632072.615	846165.915	1632076.185	846169.626	5.15	-5.00%	16.616	1632071.124	846164.365	2.15	5.00%	16.981
K0+305.00	16.851	1632076.395	846162.645	1632079.552	846166.713	5.15	-5.00%	16.594	1632075.076	846160.947	2.15	5.00%	16.959
K0+310.00	16.829	1632080.499	846159.794	1632083.209	846164.174	5.15	-5.00%	16.572	1632079.434	846158.072	2.03	5.00%	16.930
K0+315.00	16.806	1632084.883	846157.394	1632087.114	846162.036	5.15	-4.18%	16.591	1632084.176	846155.924	1.63	4.18%	16.874
K0+320.00	16.784	1632089.495	846155.468	1632091.231	846160.314	5.15	-2.91%	16.634					
K0+325.00				1632095.562	846158.975	5.14	-2.00%	16.659					
K0+330.00				1632100.065	846157.984	5.13	-2.00%	16.636					
K0+335.00			·	1632104.694	846157.302	5.12	-2.00%	16.615					
K0+340.00			·	1632109.431	846156.875	5.13	-2.00%	16.592					
K0+345.00				1632114.256	846156.642	5.14	-2.00%	16.569					
K0+350.00				1632119.154	846156.536	5.15	-2.00%	16.547					

ESTUDIOS Y DISEÑOS DEFINITIVOS DE LA SEGUNDA CALZADA Y DISEÑOS DE LA REHABILITACION DEL TRAMO GAMBOTE - MAMONAL

LISTADO DE COORDENADAS EJE GAMBOTE - ABOCOL

		EJE			ВОГ	RDE DERECHO)			BOR	DE IZQUIERD	0	
ABS	СОТА	COORD	ENADAS	COORD	ENADAS				COORD	ENADAS			
	COTA	NORTE	ESTE	NORTE	ESTE	DISTANCIA	PERALTE	COTA	NORTE	ESTE	DISTANCIA	PERALTE	COTA
K0+010.00				1631971.714	846158.129	5.15	-2.00%	17.486					
K0+015.00				1631976.610	846158.154	5.14	-2.00%	17.445					
K0+020.00				1631981.445	846158.307	5.14	-2.21%	17.395					
K0+025.00				1631986.200	846158.644	5.14	-2.94%	17.317					
K0+030.00				1631990.874	846159.217	5.15	-3.68%	17.238					
K0+035.00				1631995.437	846160.069	5.15	-4.40%	17.160					
K0+040.00	17.347	1632001.393	846156.318	1631999.890	846161.244	5.15	-4.40%	17.120					
K0+045.00	17.306	1632006.115	846157.960	1632004.238	846162.756	5.15	-4.40%	17.079	1632006.666	846156.552	1.51	4.40%	17.372
K0+050.00	17.266	1632010.697	846159.959	1632008.458	846164.597	5.15	-4.40%	17.039	1632011.403	846158.495	1.63	4.40%	17.338
K0+055.00	17.225	1632015.112	846162.303	1632012.524	846166.755	5.15	-4.40%	16.998	1632015.941	846160.876	1.65	4.40%	17.298
K0+060.00	17.190	1632019.334	846164.979	1632016.412	846169.220	5.15	-4.40%	16.963	1632020.270	846163.620	1.65	4.40%	17.263
K0+065.00	17.163	1632023.339	846167.970	1632020.101	846171.975	5.15	-4.40%	16.936	1632024.376	846166.687	1.65	4.40%	17.236
K0+070.00	17.145	1632027.102	846171.260	1632023.568	846175.006	5.15	-4.40%	16.918	1632028.235	846170.060	1.65	4.40%	17.218
K0+075.00	17.137	1632030.613	846174.819	1632026.830	846178.308	5.15	-4.40%	16.911	1632031.828	846173.698	1.65	4.40%	17.210
K0+080.00	17.137	1632033.893	846178.592	1632029.921	846181.859	5.14	-4.40%	16.911	1632035.173	846177.539	1.66	4.40%	17.210
K0+085.00	17.147	1632036.977	846182.527	1632032.864	846185.610	5.14	-4.32%	16.925	1632038.305	846181.532	1.66	4.32%	17.219
K0+090.00	17.165	1632039.908	846186.578	1632035.697	846189.529	5.14	-2.91%	17.015	1632041.265	846185.626	1.66	2.91%	17.213
K0+095.00	17.193	1632042.732	846190.704	1632038.459	846193.572	5.15	-1.51%	17.116	1632044.105	846189.782	1.65	1.51%	17.218
K0+100.00	17.230	1632045.498	846194.869	1632041.201	846197.707	5.15	-0.10%	17.225	1632046.875	846193.959	1.65	0.10%	17.232
K0+105.00	17.275	1632048.253	846199.042	1632043.954	846201.878	5.15	1.31%	17.342	1632049.630	846198.133	1.65	-1.31%	17.253
K0+110.00	17.326	1632051.007	846203.215	1632046.708	846206.052	5.15	2.71%	17.466	1632052.384	846202.306	1.65	-2.71%	17.281
K0+115.00	17.376	1632053.761	846207.388	1632049.463	846210.225	5.15	4.12%	17.588	1632055.138	846206.479	1.65	-4.12%	17.308

ANEXO No. 2: CANTIDADES DE CORTE, TERRAPLEN Y PAVIMENTO

			EJE PU	ENTE		
ABSCISA	AREA DE CORTE	AREA DE TERRAPLEN	VOLUMEN CORTE	VOLUMEN RELLENO	VOLUMEN ACUMULADO DE CORTE	VOLUMEN ACUMULADO DE TERRAPLEN
0+076	5.9192	0.0087				
			22.705	0.4118	22.705	0.4118
0+080	5.4334	0.1972	45.9319	6.6692	68.637	7,0900
0+090	3.753	1.1366	45.9319	0.0092	08.037	7.0809
0.030	3.733	1.1300	29.6606	8.7803	98.2976	15.8613
0+100	2.1752	0.5999				
			16.3472	25.2216	114.6448	41.0829
0+110	1.0842	4.2629				1010011
0+120	0.4462	7.5947	7.5701	63.1415	122.2149	104.2244
0+120	0.4462	7.5947	6.484	86.448	128.6989	190.6724
0+130	0.9141	8.3098	0.404	00.440	120.0303	130.0724
			10.8525	75.4829	139.5513	266.1553
0+140	1.4348	5.3534				
			10.1351	42.6232	149.6864	308.7785
0+150	0.7837	2.4202				227 7722
0.100	0.9542	2.9154	7.892	28.9797	157.5785	337.7583
0+160	0.9542	2.9154	7.8877	36.4597	165.4662	374.218
0+170	0.7852	3.7984	7.8677	30.4337	103.4002	374.218
			7.3916	31.3574	172.8578	405.5754
0+180	0.845	1.9833				
			4.0331	48.5729	176.8909	454.1483
0+190	0	7.2111			.=	
0+200	0	3.6717	0	55.9731	176.8909	510.1214
0+200	U	3.0/1/	2.8426	27.2818	179.7335	537.4032
0+210	0.6298	1.4605	2.0120	27.2010	173.7333	337.1032
			7.2659	21.2256	186.9994	558.6288
0+220	1.062	2.422				
			5.0779	45.0469	192.0773	603.6757
0+230	0	6.0723	1.0500	54.0206	100 1076	550 4050
0+240	0.2251	4.4594	1.0603	54.8206	193.1376	658.4963
0+240	0.2231	4.4334	14.7896	42.0794	207.9272	700.5757
0+250	2.902	3.306	11.7030	12.0731	207.3272	700.3737
			40.5579	17.7921	248.4852	718.3678
0+260	5.483	0				
			73.0933	0	321.5785	718.3678
0+270	10.0461	0	22.22.12			
0.200	0.2252	0	93.3242	0	414.9027	718.3678
0+280	9.3352	0	78.3331	0	493.2358	718.3678
0+290	6.9125	0	70.5551		753.2556	710.5076
			95.7736	0	589.0094	718.3678
0+300	12.9842	0				
			120.1824	0	709.1918	718.3678
0+310	11.9647	0				
0.217	0.4024		67.4247	0	776.6165	718.3678
0+317	8.1834	0				

	EJE PUENTE										
	,	VOLUMEN N	1DC-2								
	٨	ЛDC-2 (e=0.1	9 mts)								
ABSCISA	AREA	VOLUMEN	VOLUMEN ACUMULADO								
0+076	2.071										
		8.284	8.284								
0+080	2.071										
		20.71	28.994								
0+090	2.071										
		20.6414	49.6354								
0+100	2.0598										
		20.3643	69.9997								
0+110	2.0204										
		19.9678	89.9675								
0+120	1.9807										
		19.6801	109.6476								
0+130	1.9592										
		19.5776	129.2252								
0+140	1.957										
		19.57	148.7952								
0+150	1.957										
		19.57	168.3652								
0+160	1.957										
		19.57	187.9352								
0+170	1.957										
		19.57	207.5052								
0+180	1.957										
		19.57	227.0752								
0+190	1.957										
0.000	4.055	19.57	246.6452								
0+200	1.957	40.55	255 2452								
0.010	4.055	19.57	266.2152								
0+210	1.957	10.57	205 7052								
0.220	4.057	19.57	285.7852								
0+220	1.957	10.57	205 2552								
0.220	1.057	19.57	305.3552								
0+230	1.957	10.0402	225 2054								
0.240	2.0226	19.9402	325.2954								
0+240	2.0236	22 0902	240 2047								
0.250	2 5151	23.0893	348.3847								
0+250	2.5151	19.504	267 0007								
0+260	1.387	19.504	367.8887								
0+200	1.307	13.4287	201 2175								
0+270	1.387	13.420/	381.3175								
012/0	1.30/	13.4287	394.7462								
0+280	1.387	13.420/	394.7402								
01200	1.30/	13.4287	408.175								
0+290	1.387	13.420/	400.175								
U+23U	1.30/	13.4287	421.6037								
0+300	1.387	13.420/	421.0037								
0+300	1.30/	13.3055	434.9092								
0+310	1.3634	13.3033	454.9092								
0+310	1.3034	8.7939	443.7031								
0+317	1.2442		443.7031								
0+21/	1.2442										

EJE PUENTE

VOLUMEN	ם א כ ד ד כ	T A D II I Z A D A	201	CENTENITO
V()	$R\Delta \setminus F F \setminus$	ΤΔΒΙΙ ΙΖΔΠΔ	(())	

BASE ESTABILIZADA CON CEMENTO (e=0.200 mts)				
ABSCISA	AREA	VOLUMEN	VOLUMEN ACUMULADO	
0+076	2.4419			
		9.7674	9.7674	
0+080	2.4419			
		24.4186	34.186	
0+090	2.4419			
		24.3448	58.5307	
0+100	2.4301			
		24.0499	82.5807	
0+110	2.3886			
		23.6324	106.2131	
0+120	2.3468			
		23.3318	129.5449	
0+130	2.3242			
		23.2261	152.771	
0+140	2.3219			
		23.2186	175.9895	
0+150	2.3219			
		23.2186	199.2081	
0+160	2.3219			
		23.2186	222.4266	
0+170	2.3219			
		23.2186	245.6452	
0+180	2.3219			
		23.2186	268.8638	
0+190	2.3219			
		23.2186	292.0823	
0+200	2.3219			
		23.2186	315.3009	
0+210	2.3219			
		23.2186	338.5194	
0+220	2.3219			
		23.2186	361.738	
0+230	2.3219			
		23.6131	385.3511	
0+240	2.392			
		26.9688	412.3199	
0+250	2.9093			
		23.1482	435.4681	
0+260	1.7219			
0.050		16.6708	452.1389	
0+270	1.7219			
0.000		16.6708	468.8096	
0+280	1.7219			
		16.6708	485.4804	
0+290	1.7219			
		16.6708	502.1512	
0+300	1.7219			
		16.5393	518.6905	
0+310	1.697			
		11.0229	529.7134	
0+317	1.5715			

EJE PUENTE					
	VOLUMEN BASE GRANULAR				
	BASE GRANULAR (e=0.300 mts)				
ABSCISA	AREA	VOLUMEN	VOLUMEN ACUMULADO		
0+076	3.8947				
		15.579	15.579		
0+080	3.8947				
		38.9474	54.5264		
0+090	3.8947				
		38.8353	93.3617		
0+100	3.8771				
		38.3903	131.752		
0+110	3.8148				
		37.7638	169.5158		
0+120	3.7521				
		37.3151	206.8309		
0+130	3.7182				
		37.1583	243.9892		
0+140	3.7147				
		37.1474	281.1366		
0+150	3.7147				
		37.1474	318.284		
0+160	3.7147				
		37.1474	355.4314		
0+170	3.7147				
		37.1474	392.5789		
0+180	3.7147				
		37.1474	429.7263		
0+190	3.7147				
		37.1474	466.8737		
0+200	3.7147				
		37.1474	504.0211		
0+210	3.7147				
		37.1474	541.1686		
0+220	3.7147				
		37.1474	578.316		
0+230	3.7147				
		37.7436	616.0596		
0+240	3.82				
		42.8132	658.8728		
0+250	4.5959				
		37.0411	695.9139		
0+260	2.8147				
		27.252	723.1658		
0+270	2.8147				
		27.252	750.4178		
0+280	2.8147				
		27.252	777.6697		

0+290

0+300

0+310

0+317

2.8147

2.8147

2.7775

2.5893

27.252

27.0532

18.0989

804.9217

831.9749

850.0738

EJE GAMBOTE - ABOCOL						
ABSCISA	AREA DE CORTE	AREA DE TERRAPLEN	VOLUMEN CORTE	VOLUMEN RELLENO	VOLUMEN ACUMULADO DE CORTE	VOLUMEN ACUMULADO DE TERRAPLEN
0+044	0	10.622				
			0	66.057	0	66.057
0+050	0	12.125				
			0	134.2333	0	200.2903
0+060	0	15.661				
			0	136.3824	0	336.6728
0+070	0	12.6743				
			0	83.9795	0	420.6522
0+080	0	3.6844				
			0.0387	21.7093	0.0387	442.3615
0+090	0.0078	0.5951				
			1.2915	2.9766	1.3302	445.3382
0+100	0.2502	0				
			1.2791	6.2455	2.6093	451.5837
0+110	0.0056	1.2491				
		·	0.0225	18.6711	2.6318	470.2548
0+118	0	3.4187				

EJE GAMBOTE - ABOCOL					
VOLUMEN MDC-2					
	MDC-2 (e=0.19 mts)				
ABSCISA	AREA VOLUMEN VOLUMEN ACUMULAI				
0+044	1.2592				
		7.4287	7.4287		
0+050	1.2873				
		12.549	19.9777		
0+060	1.292				
		12.573	32.5507		
0+070	1.292				
		13.2042	45.7549		
0+080	1.292				
		13.0931	58.848		
0+090	1.292				
		12.9827	71.8308		
0+100	1.292				
		12.92	84.7508		
0+110	1.292				
		10.336	95.0868		
0+118	1.292				

EJE GAMBOTE - ABOCOL				
VOLUMEN BASE ESTABILIZADA CON CEMENTO				
BASE	BASE ESTABILIZADA CON CEMENTO (e=0.200 mts)			
ABSCISA	AREA	VOLUMEN	VOLUMEN ACUMULADO	
0+044	1.5874			
		9.3474	9.3474	
0+050	1.6169			
		15.7575	25.1049	
0+060	1.6219			
		15.783	40.8878	
0+070	1.6219			
		16.5754	57.4632	
0+080	1.6219			
		16.4358	73.8991	
0+090	1.6219			
		16.2973	90.1963	
0+100	1.6219			
		16.2186	106.4149	
0+110	1.6219			
		12.9748	119.3897	
0+118	1.6219			

EJE GAMBOTE - ABOCOL					
VOLUMEN BASE GRANULAR					
	BASE GRANULAR (e=0.300 mts)				
ABSCISA	AREA VOLUMEN VOLUMEN ACUMULADO				
0+044	2.613				
		15.3744	15.3744		
0+050	2.6574				
		25.8933	41.2677		
0+060	2.6647				
		25.9317	67.1994		
0+070	2.6647				
		27.2336	94.4331		
0+080	2.6647				
		27.0044	121.4375		
0+090	2.6647				
		26.7768	148.2143		
0+100	2.6647				
		26.6474	174.8617		
0+110	2.6647				
		21.3179	196.1796		
0+118	2.6647				

ANEXO No. 3: PLANOS DE PLANTA-PERFIL, SECCIONES TRASVERSALES